First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G.

نویسندگان

  • Ming Li
  • Shivender M D Shandilya
  • Michael A Carpenter
  • Anurag Rathore
  • William L Brown
  • Angela L Perkins
  • Daniel A Harki
  • Jonathan Solberg
  • Derek J Hook
  • Krishan K Pandey
  • Michael A Parniak
  • Jeffrey R Johnson
  • Nevan J Krogan
  • Mohan Somasundaran
  • Akbar Ali
  • Celia A Schiffer
  • Reuben S Harris
چکیده

APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access to substrate DNA cytosines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The retroviral hypermutation specificity of APOBEC3F and APOBEC3G is governed by the C-terminal DNA cytosine deaminase domain.

The human proteins APOBEC3F and APOBEC3G restrict retroviral infection by deaminating cytosine residues in the first cDNA strand of a replicating virus. These proteins have two putative deaminase domains, and it is unclear whether one or both catalyze deamination, unlike their homologs, AID and APOBEC1, which are well characterized single domain deaminases. Here, we show that only the C-termina...

متن کامل

Base Damage within Single-Strand DNA Underlies In Vivo Hypermutability Induced by a Ubiquitous Environmental Agent

Chromosomal DNA must be in single-strand form for important transactions such as replication, transcription, and recombination to occur. The single-strand DNA (ssDNA) is more prone to damage than double-strand DNA (dsDNA), due to greater exposure of chemically reactive moieties in the nitrogenous bases. Thus, there can be agents that damage regions of ssDNA in vivo while being inert toward dsDN...

متن کامل

Biochemical analysis of hypermutation by the deoxycytidine deaminase APOBEC3A.

APOBEC3A belongs to a family of single-stranded DNA (ssDNA) DNA cytosine deaminases that are known for restriction of HIV through deamination-induced mutational inactivation, e.g. APOBEC3G, or initiation of somatic hypermutation and class switch recombination (activation-induced cytidine deaminase). APOBEC3A, which is localized to both the cytoplasm and nucleus, not only restricts HIV but can a...

متن کامل

Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G.

Activation-induced cytidine deaminase (AID) and APOBEC3G catalyze deamination of cytosine to uracil on single-stranded DNA, thereby setting in motion a regulated hypermutagenic process essential for human well-being. However, if regulation fails, havoc ensues. AID plays a central role in the synthesis of high affinity antibodies, and APOBEC3G inactivates human immunodeficiency virus-1. This min...

متن کامل

APOBEC3G cytosine deamination hotspots are defined by both sequence context and single-stranded DNA secondary structure

Apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G (i.e., APOBEC3G or A3G) is an evolutionarily conserved cytosine deaminase that potently restricts human immunodeficiency virus type 1 (HIV-1), retrotransposons and other viruses. A3G has a nucleotide target site specificity for cytosine dinucleotides, though only certain cytosine dinucleotides are 'hotspots' for cytosine deami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS chemical biology

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2012